Building engineering physics
![]() |
Building engineering physics relates to the energy performance of buildings and their indoor and outdoor environments. By properly understanding and applying building engineering physics, it is possible to develop high performance buildings that are comfortable and functional, and to minimise the environmental impacts of their construction and operation.
The idea of a new discipline of building engineering physics was introduced by the Royal Academy of Engineering in a report 'Engineering a low carbon built environment – The discipline of building engineering physics', published in January 2010.
The report suggested that: 'The UK will not be able to achieve its target of reducing carbon emissions by 80% by 2050 unless it urgently addresses carbon emissions from the built environment. Buildings currently account for 45% of our carbon emissions but it is estimated that 80% of the buildings we will be occupying in 2050 have already been built. '
Building engineering physics is a convergence of the disciplines of building services engineering, applied physics and building construction engineering. It is more focused than the related subjects of building science or 'building physics' and considers more broadly our knowledge of the physical behaviour of buildings and their impact on energy efficiency, comfort, health, safety, durability and so on.
The principal aspects of building engineering physics include:
- Thermal performance.
- Acoustics.
- Air movement.
- Climate.
- Construction technology.
- Building services.
- Control of moisture.
- Lighting.
The Royal Academy of Engineering report suggested that the motivation for promoting a new discipline was driven by a historic lack of awareness or recognition by built environment practitioners of the importance of building engineering physics, and a lack of understanding about how to apply the principles in building design.
This in part, they believe, was because building projects are traditionally led by architects rather than engineers, and strategic design decisions do not adequately address building energy performance.
This issue has to some extent been addressed by the introduction of building engineering physics to many architecture degree courses. Building services engineers also commonly undertake building engineering physics modules as part of their training.
The benefits of building engineering physics include:
- Capital cost reduction: Better design decisions and reduced design fees.
- Operating cost reduction: Energy efficiency, resulting in lower energy bills and lower exposure to energy price rises.
- Creative design focused on real-life building performance rather than compliance.
- Occupant satisfaction: High performance buildings can result in better productivity and comfort of the occupants.
[edit] Related articles on Designing Buildings Wiki
- Air conditioning.
- Building management systems.
- Building pathology.
- Building science.
- Heat transfer.
- HVAC.
- Lighting and energy efficiency.
- Mechanical and electrical.
- Renewable energy.
- Retrofit.
- The business case for adapting buildings to climate change.
- The science of lifts.
- Thermal comfort.
- Ventilation.
[edit] External references
- Royal Academy of Engineering - Engineering a low carbon built environment
Featured articles and news
What to do with troublesome statues?
A tricky political issue.
Designing Buildings content from and for its users
Discover more on how simple and quick it is to publish an article.
Recent users articles; Timber and retrofit
Which products, for what reasons.
Recent users articles; Digitally Built Britain
ISO 19650, BIM and data management.
Recent users articles; Interim valuations and payments
Applications, notices ad points to remember.
Recent users articles; What is H-Scaffolding?
Elements, features and areas of use.
Recent users articles; what are NZEBs ?
How do they contribute to Sustainable Development.
The most viewed articles in 2022 on Designing Buildings
Written in the past 6 months, one year and beyond.
Second stairs for new tower blocks
Government launches a 12-week consultation
Happy Festive Holidays to all our users from here at DB
On the first day of Christmas DB for the Industry...
The psychological power of the built environment.
IHBC signpost update from Lords Committee on climate
Government must support behaviour change to meet targets.
Reflecting on 2022 into 2023 with the APM WiPM SIG
Women in Project Management conference 2022.
Types, colours and processing of hydrogen on DB
Grey, green, purple, blue, yellow, turquoise, brown and black.
The Kyoto Protocol a brief reminder on DB
Adopted in 1997, ratified in 2005..
Europe moves to phase out electrical SF6 gas
Sulphur hexafluoride the world’s most potent GHG.
Biomass boiler market on the rise in Europe
Proving to be a driver for decarbonisation targets.